[Medium] 48. Rotate Image
[Medium] 48. Rotate Image
This is a matrix manipulation problem that requires rotating a 2D matrix 90 degrees clockwise in-place. The key insight is understanding the relationship between matrix positions during rotation and implementing it efficiently.
Problem Description
Given an n x n 2D matrix representing an image, rotate the image by 90 degrees clockwise in-place.
Examples
Example 1:
Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [[7,4,1],[8,5,2],[9,6,3]]
Example 2:
Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
Constraints
- n == matrix.length == matrix[i].length
- 1 <= n <= 20
- -1000 <= matrix[i][j] <= 1000
Approach
There are two main approaches to solve this problem:
- Direct Rotation: Rotate elements in groups of 4 using coordinate mapping
- Transpose + Reflect: Transpose the matrix then reflect each row
Solution 1: Direct Rotation
Time Complexity: O(n²) - Visit each element once
Space Complexity: O(1) - Only using constant extra space
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for(int i = 0; i < (n+1)/2; i++) {
for (int j = 0; j< n/2; j++) {
int temp = matrix[i][j];
matrix[i][j] = matrix[n - 1 - j][i];
matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
matrix[j][n - 1 - i] = temp;
}
}
}
};
Solution 2: Transpose + Reflect
Time Complexity: O(n²) - Visit each element twice
Space Complexity: O(1) - Only using constant extra space
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
transpose(matrix);
reflect(matrix);
}
private:
void transpose(vector<vector<int>>& matrix) {
const int n = matrix.size();
for (int i = 0; i < n; i++){
for (int j = i + 1; j < n; j++) {
swap(matrix[j][i], matrix[i][j]);
}
}
}
void reflect(vector<vector<int>>& matrix) {
for (auto& row : matrix) {
reverse(row.begin(), row.end());
}
}
};
Step-by-Step Example
Let’s trace through Solution 2 with matrix = [[1,2,3],[4,5,6],[7,8,9]]:
Step 1: Transpose
Original: [1,2,3] Transposed: [1,4,7]
[4,5,6] [2,5,8]
[7,8,9] [3,6,9]
Step 2: Reflect (reverse each row)
Transposed: [1,4,7] Reflected: [7,4,1]
[2,5,8] [8,5,2]
[3,6,9] [9,6,3]
Result: [[7,4,1],[8,5,2],[9,6,3]]
Coordinate Mapping (Solution 1)
For a 90° clockwise rotation, the coordinate transformation is:
(i, j) → (j, n-1-i)
The four positions that rotate together:
(i, j)→(j, n-1-i)(j, n-1-i)→(n-1-i, n-1-j)(n-1-i, n-1-j)→(n-1-j, i)(n-1-j, i)→(i, j)
Key Insights
- In-Place Rotation: Must modify the original matrix without extra space
- Group of 4: Each element participates in a cycle of 4 positions
- Boundary Handling: Careful with odd/even matrix sizes
- Mathematical Approach: Transpose + reflect is more intuitive
Solution Comparison
| Approach | Pros | Cons |
|---|---|---|
| Direct Rotation | Single pass, efficient | Complex coordinate mapping |
| Transpose + Reflect | Intuitive, easier to understand | Two passes through matrix |
Matrix Size Considerations
- Even n: Process all n²/4 groups
- Odd n: Process (n²-1)/4 groups (center element stays unchanged)
Common Mistakes
- Coordinate Errors: Incorrect mapping formulas
- Boundary Issues: Not handling odd matrix sizes correctly
- Over-rotation: Processing the same elements multiple times
- Index Confusion: Mixing up row and column indices