[Medium] 48. Rotate Image

This is a matrix manipulation problem that requires rotating a 2D matrix 90 degrees clockwise in-place. The key insight is understanding the relationship between matrix positions during rotation and implementing it efficiently.

Problem Description

Given an n x n 2D matrix representing an image, rotate the image by 90 degrees clockwise in-place.

Examples

Example 1:

Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [[7,4,1],[8,5,2],[9,6,3]]

Example 2:

Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

Constraints

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 20
  • -1000 <= matrix[i][j] <= 1000

Approach

There are two main approaches to solve this problem:

  1. Direct Rotation: Rotate elements in groups of 4 using coordinate mapping
  2. Transpose + Reflect: Transpose the matrix then reflect each row

Solution 1: Direct Rotation

Time Complexity: O(n²) - Visit each element once
Space Complexity: O(1) - Only using constant extra space

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i = 0; i < (n+1)/2; i++) {
            for (int j = 0; j< n/2; j++) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n - 1 - j][i];
                matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
                matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
                matrix[j][n - 1 - i] = temp;
            }
        }
    }
};

Solution 2: Transpose + Reflect

Time Complexity: O(n²) - Visit each element twice
Space Complexity: O(1) - Only using constant extra space

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        transpose(matrix);
        reflect(matrix);
    }

private:
    void transpose(vector<vector<int>>& matrix) {
        const int n = matrix.size();
        for (int i = 0; i < n; i++){
            for (int j = i + 1; j < n; j++) {
                swap(matrix[j][i], matrix[i][j]);
            }
        }
    }

    void reflect(vector<vector<int>>& matrix) {
        for (auto& row : matrix) {
            reverse(row.begin(), row.end());
        }
    }
};

Step-by-Step Example

Let’s trace through Solution 2 with matrix = [[1,2,3],[4,5,6],[7,8,9]]:

Step 1: Transpose

Original:  [1,2,3]    Transposed:  [1,4,7]
           [4,5,6]                 [2,5,8]
           [7,8,9]                 [3,6,9]

Step 2: Reflect (reverse each row)

Transposed: [1,4,7]    Reflected:   [7,4,1]
            [2,5,8]                [8,5,2]
            [3,6,9]                [9,6,3]

Result: [[7,4,1],[8,5,2],[9,6,3]]

Coordinate Mapping (Solution 1)

For a 90° clockwise rotation, the coordinate transformation is:

  • (i, j) → (j, n-1-i)

The four positions that rotate together:

  1. (i, j)(j, n-1-i)
  2. (j, n-1-i)(n-1-i, n-1-j)
  3. (n-1-i, n-1-j)(n-1-j, i)
  4. (n-1-j, i)(i, j)

Key Insights

  1. In-Place Rotation: Must modify the original matrix without extra space
  2. Group of 4: Each element participates in a cycle of 4 positions
  3. Boundary Handling: Careful with odd/even matrix sizes
  4. Mathematical Approach: Transpose + reflect is more intuitive

Solution Comparison

Approach Pros Cons
Direct Rotation Single pass, efficient Complex coordinate mapping
Transpose + Reflect Intuitive, easier to understand Two passes through matrix

Matrix Size Considerations

  • Even n: Process all n²/4 groups
  • Odd n: Process (n²-1)/4 groups (center element stays unchanged)

Common Mistakes

  • Coordinate Errors: Incorrect mapping formulas
  • Boundary Issues: Not handling odd matrix sizes correctly
  • Over-rotation: Processing the same elements multiple times
  • Index Confusion: Mixing up row and column indices