[Medium] 131. Palindrome Partitioning
[Medium] 131. Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s.
Examples
Example 1:
Input: s = "aab"
Output: [["a","a","b"],["aa","b"]]
Example 2:
Input: s = "a"
Output: [["a"]]
Constraints
- 1 <= s.length <= 16
- s contains only lowercase English letters
Approach
The solution uses backtracking (DFS) with the following strategy:
- Base Case: When we’ve processed the entire string, add the current partition to results
- Recursive Case: For each possible end position, check if substring is palindrome
- Backtrack: If palindrome, add to current partition and recurse, then remove
- Palindrome Check: Verify if substring from start to end is a palindrome
Solution in C++
Time Complexity: O(2^n × n) - Exponential due to backtracking, n for palindrome check
Space Complexity: O(n) - For recursion stack and current partition
class Solution {
public:
vector<vector<string>> partition(string s) {
vector<string> cur;
vector<vector<string>> rtn;
dfs(s, 0, cur, rtn);
return rtn;
}
private:
void dfs(const string& str, int start, vector<string>& cur, vector<vector<string>>& rtn) {
if(start >= str.length()) rtn.push_back(cur);
for (int end = start; end < str.length(); end++) {
if(isPalindrome(str, start, end)) {
cur.push_back(str.substr(start, end - start + 1));
dfs(str, end + 1, cur, rtn);
cur.pop_back();
}
}
}
bool isPalindrome(const string& str, int start, int end) {
string copy = str.substr(start, end - start + 1);
reverse(copy.begin(), copy.end());
return str.substr(start, end - start + 1) == copy;
}
};
Step-by-Step Example
For s = "aab":
- Start at index 0:
- Check “a” (0,0): is palindrome → add to path:
["a"] - Recurse with start=1
- Check “a” (0,0): is palindrome → add to path:
- Start at index 1:
- Check “a” (1,1): is palindrome → add to path:
["a","a"] - Recurse with start=2
- Check “a” (1,1): is palindrome → add to path:
- Start at index 2:
- Check “b” (2,2): is palindrome → add to path:
["a","a","b"] - Recurse with start=3 → base case → add
["a","a","b"]to result
- Check “b” (2,2): is palindrome → add to path:
- Backtrack to index 1:
- Remove “a” from path:
["a"] - Check “ab” (1,2): not palindrome → skip
- Remove “a” from path:
- Backtrack to index 0:
- Remove “a” from path:
[] - Check “aa” (0,1): is palindrome → add to path:
["aa"] - Recurse with start=2
- Remove “a” from path:
- Start at index 2:
- Check “b” (2,2): is palindrome → add to path:
["aa","b"] - Recurse with start=3 → base case → add
["aa","b"]to result
- Check “b” (2,2): is palindrome → add to path:
Result: [["a","a","b"],["aa","b"]]
Key Insights
- Backtracking Pattern: Add → Recurse → Remove
- Palindrome Check: Verify each substring before adding to partition
- Index Management: Use start and end indices to define substrings
- Base Case: When start >= string length, we have a complete partition
- Pruning: Only recurse if current substring is a palindrome
Alternative Approaches
1. Optimized Palindrome Check
bool isPalindrome(const string& str, int start, int end) {
while (start < end) {
if (str[start] != str[end]) return false;
start++;
end--;
}
return true;
}
2. Precompute Palindrome Table
vector<vector<bool>> isPal;
// Precompute all palindrome substrings
// Time: O(n²), Space: O(n²)
Common Mistakes
- Forgetting to backtrack: Not removing elements after recursion
- Index errors: Off-by-one errors in substring extraction
- Inefficient palindrome check: Creating unnecessary string copies
- Missing base case: Not handling empty string or single character
- Duplicate results: Not properly managing the current partition
Related Problems
- 132. Palindrome Partitioning II - Minimum cuts
- 5. Longest Palindromic Substring
- 647. Palindromic Substrings
- 93. Restore IP Addresses - Similar partitioning pattern
Visual Representation
Input: "aab"
Backtracking Tree:
""
/ \
"a" "aa"
/ \
"a" "b"
/
"b"
/
[complete]
Results: ["a","a","b"] and ["aa","b"]
This problem demonstrates the classic backtracking pattern for generating all possible partitions with a constraint (palindrome check).