[Medium] 93. Restore IP Addresses
[Medium] 93. Restore IP Addresses
A valid IP address consists of exactly four integers separated by single dots. Each integer is between 0 and 255 (inclusive) and cannot have leading zeros.
- For example,
"0.1.2.201"and"192.168.1.1"are valid IP addresses, but"0.011.255.245","192.168.1.312"and"192.168@1.1"are invalid IP addresses.
Given a string s containing only digits, return all possible valid IP addresses that can be formed by inserting dots into s. You may not reorder or remove any digits in s. You may return the valid IP addresses in any order.
Examples
Example 1:
Input: s = "25525511135"
Output: ["255.255.11.135","255.255.111.35"]
Example 2:
Input: s = "0000"
Output: ["0.0.0.0"]
Example 3:
Input: s = "101023"
Output: ["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]
Constraints
1 <= s.length <= 20sconsists of digits only.
Clarification Questions
Before diving into the solution, here are 5 important clarifications and assumptions to discuss during an interview:
-
IP address format: What is a valid IP address? (Assumption: Four parts separated by dots, each part is 0-255, no leading zeros except “0”)
-
Restoration: What does “restore” mean? (Assumption: Insert dots to split string into four valid IP address parts)
-
Return format: What should we return? (Assumption: List of all valid IP addresses - strings with dots inserted)
-
Leading zeros: How should we handle leading zeros? (Assumption: Not allowed - “01” is invalid, “0” is valid)
-
All combinations: Should we return all valid IPs? (Assumption: Yes - return all possible valid IP addresses)
Interview Deduction Process (20 minutes)
Step 1: Brute-Force Approach (5 minutes)
Try all possible ways to insert three dots into the string. For each combination of three positions, split the string into four parts and check if each part is a valid IP segment (0-255, no leading zeros). This requires checking C(n-1, 3) combinations where n is string length, which is O(n³) combinations, each requiring validation. This works but is inefficient.
Step 2: Semi-Optimized Approach (7 minutes)
Use backtracking: try placing dots one at a time. For each dot position, validate the current segment before proceeding. If a segment is invalid, backtrack immediately. This prunes invalid branches early, reducing the search space significantly. However, the worst-case complexity is still exponential, though average case improves with pruning.
Step 3: Optimized Solution (8 minutes)
Use backtracking with careful validation. Place dots sequentially, ensuring each segment is valid (1-3 digits, 0-255, no leading zeros except “0”). Use early termination: if remaining characters cannot form valid segments (too few or too many), backtrack. Track the number of segments placed (need exactly 4). This achieves optimal time complexity by exploring only valid paths. The key optimizations are: validating segments immediately, checking if remaining string can form valid segments, and using backtracking to avoid exploring invalid combinations.
Solution: Backtracking with C++20 Optimizations
Time Complexity: O(1) - At most 3^4 = 81 combinations
Space Complexity: O(1) - At most 19 characters per IP address
This solution uses backtracking to try all possible ways to split the string into 4 parts. We optimize with C++20 features including string_view for efficient substring operations and early pruning.
Solution 1: Optimized C++20 Version
using namespace std;
class Solution {
private:
// Check if a segment is valid using string_view for efficiency
bool isValid(string_view segment) {
int len = segment.length();
// Single digit is always valid (0-9)
if (len == 1) return true;
// Leading zero is invalid
if (segment[0] == '0') return false;
// Check if <= 255 using efficient comparison
if (len == 2) return true; // 10-99
if (len == 3) {
// Compare with "255" lexicographically
return segment <= "255";
}
return false; // len > 3 is invalid
}
void backtrack(
string_view s,
int start,
vector<int>& dots,
vector<string>& result
) {
int remainingLen = (int)s.length() - start;
int remainingCnt = 4 - (int)dots.size();
// Early pruning: check if remaining digits can form valid segments
if (remainingLen > remainingCnt * 3 || remainingLen < remainingCnt) {
return;
}
// Base case: we have 3 dots, check if remaining segment is valid
if (dots.size() == 3) {
auto lastSegment = s.substr(start);
if (isValid(lastSegment)) {
// Build IP address efficiently
string ip;
ip.reserve(s.length() + 3); // Reserve space for dots
int last = 0;
for (int dot : dots) {
ip.append(s.substr(last, dot));
last += dot;
ip.append(".");
}
ip.append(s.substr(start));
result.push_back(move(ip));
}
return;
}
// Try segments of length 1, 2, or 3
for (int curr = 1; curr <= 3 && curr <= remainingLen; curr++) {
dots.push_back(curr);
auto segment = s.substr(start, curr);
if (isValid(segment)) {
backtrack(s, start + curr, dots, result);
}
dots.pop_back();
}
}
public:
vector<string> restoreIpAddresses(string s) {
vector<int> dots;
dots.reserve(3); // At most 3 dots
vector<string> result;
// Use string_view to avoid copying
string_view sv(s);
backtrack(sv, 0, dots, result);
return result;
}
};
Solution 2: Further Optimized with String Building
using namespace std;
class Solution {
private:
bool isValid(string_view segment) {
int len = segment.length();
if (len == 1) return true;
if (segment[0] == '0') return false;
if (len == 2) return true;
return len == 3 && segment <= "255";
}
void backtrack(
string_view s,
int start,
vector<int>& segments,
vector<string>& result
) {
int remainingLen = (int)s.length() - start;
int remainingCnt = 4 - (int)segments.size();
if (remainingLen > remainingCnt * 3 || remainingLen < remainingCnt) {
return;
}
if (segments.size() == 3) {
auto lastSegment = s.substr(start);
if (isValid(lastSegment)) {
// Build IP more efficiently by pre-calculating size
string ip;
int totalLen = (int)s.length() + 3;
ip.reserve(totalLen);
int pos = 0;
for (int segLen : segments) {
ip.append(s.substr(pos, segLen));
pos += segLen;
ip += '.';
}
ip.append(s.substr(start));
result.push_back(move(ip));
}
return;
}
for (int len = 1; len <= 3 && len <= remainingLen; len++) {
segments.push_back(len);
if (isValid(s.substr(start, len))) {
backtrack(s, start + len, segments, result);
}
segments.pop_back();
}
}
public:
vector<string> restoreIpAddresses(string s) {
vector<int> segments;
segments.reserve(3);
vector<string> result;
backtrack(string_view(s), 0, segments, result);
return result;
}
};
Key Optimizations (C++20)
string_view: Avoids string copying when checking segments and building resultsreserve(): Pre-allocates memory for vectors and strings to avoid reallocations- Early Pruning: Checks if remaining digits can form valid segments before recursing
- Move Semantics: Uses
move()when pushing to result vector - Efficient String Building: Pre-calculates size and uses
append()for better performance
How the Algorithm Works
Step-by-Step Example: s = "25525511135"
- Try first segment “2” (length 1)
- Valid:
2(0-255) - Recursively try remaining:
"5525511135"
- Valid:
- Try second segment “5” (length 1)
- Valid:
5 - Continue:
"525511135"
- Valid:
- Continue building…
- Eventually find:
"255.255.11.135"and"255.255.111.35"
- Eventually find:
Visual Representation
"25525511135"
│
├─ "2" (valid)
│ ├─ "5" (valid)
│ │ ├─ "5" (valid)
│ │ │ └─ "25511135" → try "255", "2551", "25511"...
│ │ └─ "55" (valid)
│ │ └─ ...
│ └─ "55" (valid)
│ └─ ...
└─ "25" (valid)
└─ ...
Algorithm Breakdown
1. Validation Function
bool isValid(std::string_view segment) {
if (segment.length() == 1) return true; // 0-9
if (segment[0] == '0') return false; // Leading zero
if (segment.length() == 2) return true; // 10-99
return segment <= "255"; // 100-255
}
2. Backtracking Function
void backtrack(string_view s, int start, vector<int>& segments, ...) {
// Early pruning
if (remainingLen > remainingCnt * 3 || remainingLen < remainingCnt) {
return;
}
// Base case: 3 segments placed
if (segments.size() == 3) {
// Check last segment and build IP
}
// Try segments of length 1, 2, 3
for (int len = 1; len <= 3; ++len) {
if (isValid(s.substr(start, len))) {
backtrack(s, start + len, segments, result);
}
}
}
Complexity Analysis
| Aspect | Complexity |
|---|---|
| Time | O(1) - At most 3^4 = 81 combinations |
| Space | O(1) - At most 19 characters per IP address |
| Recursion Depth | O(4) - Maximum 4 segments |
Edge Cases
- All zeros:
"0000"→["0.0.0.0"] - Leading zeros:
"010010"→["0.10.0.10","0.100.1.0"] - Long string:
"255255255255"→["255.255.255.255"] - Short string:
"1111"→["1.1.1.1"]
Why This Solution is Optimal
- Early Pruning: Eliminates invalid branches immediately
- String View: Avoids unnecessary string copies
- Memory Pre-allocation: Reduces reallocations
- Constant Time: Bounded by maximum 81 combinations
- Clean Backtracking: Simple and maintainable
Common Mistakes
- Not checking leading zeros:
"010"is invalid - Not checking range: Numbers must be 0-255
- Not pruning early: Should check remaining length
- String copying: Use
string_viewfor efficiency - Forgetting base case: Must have exactly 4 segments