981. Time Based Key-Value Store
981. Time Based Key-Value Store
Problem Statement
Design a time-based key-value data structure that can store multiple values for the same key at different timestamps and retrieve the key’s value at a certain timestamp.
Implement the TimeMap class:
TimeMap()Initializes the object of the data structure.void set(String key, String value, int timestamp)Stores the keykeywith thevalueat the given timetimestamp.String get(String key, int timestamp)Returns a value such thatsetwas called previously, withtimestamp_prev <= timestamp. If there are multiple such values, it returns the value associated with the largesttimestamp_prev. If there are no values, it returns"".
Examples
Example 1:
Input
["TimeMap", "set", "get", "get", "set", "get", "get"]
[[], ["foo", "bar", 1], ["foo", 1], ["foo", 3], ["foo", "bar2", 4], ["foo", 4], ["foo", 5]]
Output
[null, null, "bar", "bar", null, "bar2", "bar2"]
Explanation
TimeMap timeMap = new TimeMap();
timeMap.set("foo", "bar", 1); // store the key "foo" and value "bar" along with timestamp = 1.
timeMap.get("foo", 1); // return "bar"
timeMap.get("foo", 3); // return "bar", since there is no value corresponding to foo at timestamp 3 and timestamp 2, then the only value is at timestamp 1 is "bar".
timeMap.set("foo", "bar2", 4); // store the key "foo" and value "bar2" along with timestamp = 4.
timeMap.get("foo", 4); // return "bar2"
timeMap.get("foo", 5); // return "bar2"
Example 2:
Input
["TimeMap", "set", "set", "get", "get", "get", "get", "get"]
[[], ["love", "high", 10], ["love", "low", 20], ["love", 5], ["love", 10], ["love", 10], ["love", 15], ["love", 20], ["love", 25]]
Output
[null, null, null, "", "high", "high", "low", "low", "low"]
Explanation
TimeMap timeMap = new TimeMap();
timeMap.set("love", "high", 10);
timeMap.set("love", "low", 20);
timeMap.get("love", 5); // return "" (no value at timestamp <= 5)
timeMap.get("love", 10); // return "high"
timeMap.get("love", 10); // return "high"
timeMap.get("love", 15); // return "high" (closest timestamp <= 15 is 10)
timeMap.get("love", 20); // return "low"
timeMap.get("love", 25); // return "low"
Constraints
1 <= key.length, value.length <= 100keyandvalueconsist of lowercase English letters and digits.1 <= timestamp <= 10^7- All the timestamps
timestampofsetare strictly increasing. - At most
2 * 10^5calls will be made tosetandget.
Clarification Questions
Before diving into the solution, here are 5 important clarifications and assumptions to discuss during an interview:
-
Timestamp ordering: Are timestamps strictly increasing? (Assumption: Yes - all timestamps in
setare strictly increasing, which means we can use binary search) -
Get behavior: What should
getreturn if no value exists at or before the timestamp? (Assumption: Return empty string""- no value found) -
Multiple values: Can the same key have multiple values at different timestamps? (Assumption: Yes - each
setcall adds a new timestamp-value pair for the key) -
Get requirement: What value should
getreturn if multiple values exist? (Assumption: Return value associated with the largesttimestamp_prev <= timestamp- closest valid timestamp) -
Data structure: What data structure should we use? (Assumption: Hash map to store key -> list of (timestamp, value) pairs, sorted by timestamp)
Interview Deduction Process (20 minutes)
Step 1: Brute-Force Approach (5 minutes)
For set, simply append the (timestamp, value) pair to a list for that key. For get, scan through all values for the key from the end (since timestamps are increasing), find the first value with timestamp <= target_timestamp, and return it. This approach has O(1) time for set but O(n) time for get, where n is the number of values for that key.
Step 2: Semi-Optimized Approach (7 minutes)
Since timestamps are strictly increasing, the values for each key are stored in sorted order by timestamp. We can use binary search to find the largest timestamp that is <= target timestamp. This reduces get time complexity to O(log n) while keeping set at O(1).
Step 3: Optimized Solution (8 minutes)
Use a hash map to store key -> vector of (timestamp, value) pairs. Since timestamps are strictly increasing, the vector is automatically sorted. For get, use binary search to find the largest timestamp <= target timestamp. We can implement binary search manually or use STL’s lower_bound with a custom comparator. This achieves O(1) time for set and O(log n) time for get.
Solution Approach
This problem requires designing a data structure that supports efficient insertion and retrieval based on timestamps. The key insight is that timestamps are strictly increasing, which means we can maintain sorted order and use binary search.
Key Insights:
- Strictly Increasing Timestamps: Since timestamps are strictly increasing, values are automatically sorted
- Binary Search: Use binary search to find the largest timestamp <= target timestamp
- Hash Map Storage: Use hash map to map keys to their timestamp-value pairs
- Lower Bound Pattern: Finding the largest timestamp <= target is similar to finding the upper bound minus 1
Solution 1: Binary Search with Custom Implementation
class TimeMap {
public:
TimeMap() {
}
void set(string key, string value, int timestamp) {
cache[key].emplace_back(timestamp, value);
}
string get(string key, int timestamp) {
if(!cache.contains(key)) return "";
string rtn = "";
const auto& values = cache[key];
int left = 0, right = values.size();
while(left < right) {
int mid = left + (right - left) / 2;
if(values[mid].first <= timestamp) {
rtn = values[mid].second;
left = mid + 1; //search right for newer valid timestamp
} else {
right = mid;
}
}
return rtn;
}
private:
unordered_map<string, vector<pair<int, string>>> cache;
};
Algorithm Breakdown:
- Data Structure:
unordered_map<string, vector<pair<int, string>>>- maps key to sorted list of (timestamp, value) pairs - Set Operation: Append (timestamp, value) to the vector for that key - O(1) amortized
- Get Operation:
- Check if key exists, return
""if not - Binary search to find the largest timestamp <= target timestamp
- If
values[mid].first <= timestamp, update result and search right for a newer valid timestamp - Otherwise, search left
- Return the last valid value found
- Check if key exists, return
Why This Works:
- Binary Search Pattern: We’re finding the rightmost position where
timestamp <= target_timestamp - Update on Valid: When we find a valid timestamp (
<= target), we update the result and continue searching right - Convergence: The loop ensures we find the largest valid timestamp
Solution 2: Using STL lower_bound
class TimeMap {
public:
TimeMap() {
}
void set(string key, string value, int timestamp) {
cache[key].emplace_back(timestamp, value);
}
string get(string key, int timestamp) {
if(!cache.contains(key)) return "";
const auto& values = cache[key];
auto it = lower_bound(values.begin(), values.end(), timestamp,
[](const pair<int, string>& p, int ts) {
return p.first < ts;
});
if(it != values.end() && it->first == timestamp) {
return it->second;
}
if(it == values.begin()) return "";
return prev(it)->second;
}
private:
unordered_map<string, vector<pair<int, string>>> cache;
};
Algorithm Breakdown:
- Set Operation: Same as Solution 1 - append to vector
- Get Operation:
- Use
lower_boundwith custom comparator to find first position wheretimestamp >= target_timestamp - If exact match found, return that value
- If
lower_boundreturnsbegin(), no valid timestamp exists, return"" - Otherwise, return the value at
prev(it)(the largest timestamp < target_timestamp)
- Use
Why This Works:
- Lower Bound: Finds the first position where
timestamp >= target_timestamp - Exact Match: If found, return immediately
- Previous Element: If not exact match, the previous element is the largest timestamp < target_timestamp
Solution 3: Using STL upper_bound
class TimeMap {
public:
TimeMap() {
}
void set(string key, string value, int timestamp) {
cache[key].emplace_back(timestamp, value);
}
string get(string key, int timestamp) {
if(!cache.contains(key)) return "";
const auto& values = cache[key];
auto it = upper_bound(values.begin(), values.end(), timestamp,
[](int ts, const pair<int, string>& p) {
return ts < p.first;
});
if(it == values.begin()) return "";
return prev(it)->second;
}
private:
unordered_map<string, vector<pair<int, string>>> cache;
};
Algorithm Breakdown:
- Set Operation: Same as previous solutions - append to vector
- Get Operation:
- Use
upper_boundwith custom comparator to find first position wheretimestamp > target_timestamp - The comparator
[](int ts, const pair<int, string>& p) { return ts < p.first; }compares target timestamp with element’s timestamp - If
upper_boundreturnsbegin(), no valid timestamp exists (all timestamps > target), return"" - Otherwise, return the value at
prev(it)(the largest timestamp <= target_timestamp)
- Use
Why This Works:
- Upper Bound: Finds the first position where
timestamp > target_timestamp - Previous Element: The element before
upper_boundis the largest timestamp <= target_timestamp - Simpler Logic: No need to check for exact match -
prev(it)always gives the correct answer - Comparator Order: Note the parameter order is reversed:
(int ts, const pair<int, string>& p)instead of(const pair<int, string>& p, int ts)
Sample Test Case Run:
Input:
TimeMap timeMap = new TimeMap();
timeMap.set("foo", "bar", 1);
timeMap.get("foo", 1);
timeMap.get("foo", 3);
timeMap.set("foo", "bar2", 4);
timeMap.get("foo", 4);
timeMap.get("foo", 5);
Solution 1 Execution:
Step 1: set("foo", "bar", 1)
cache["foo"] = [(1, "bar")]
Step 2: get("foo", 1)
values = [(1, "bar")]
left = 0, right = 1
Iteration 1:
mid = 0 + (1 - 0) / 2 = 0
values[0].first = 1 <= 1 ✓
rtn = "bar"
left = 0 + 1 = 1
Search range: [1, 1]
Loop condition: left (1) < right (1) is false, exit loop
Return: "bar" ✓
Step 3: get("foo", 3)
values = [(1, "bar")]
left = 0, right = 1
Iteration 1:
mid = 0 + (1 - 0) / 2 = 0
values[0].first = 1 <= 3 ✓
rtn = "bar"
left = 0 + 1 = 1
Search range: [1, 1]
Loop condition: left (1) < right (1) is false, exit loop
Return: "bar" ✓
Step 4: set("foo", "bar2", 4)
cache["foo"] = [(1, "bar"), (4, "bar2")]
Step 5: get("foo", 4)
values = [(1, "bar"), (4, "bar2")]
left = 0, right = 2
Iteration 1:
mid = 0 + (2 - 0) / 2 = 1
values[1].first = 4 <= 4 ✓
rtn = "bar2"
left = 1 + 1 = 2
Search range: [2, 2]
Loop condition: left (2) < right (2) is false, exit loop
Return: "bar2" ✓
Step 6: get("foo", 5)
values = [(1, "bar"), (4, "bar2")]
left = 0, right = 2
Iteration 1:
mid = 0 + (2 - 0) / 2 = 1
values[1].first = 4 <= 5 ✓
rtn = "bar2"
left = 1 + 1 = 2
Search range: [2, 2]
Loop condition: left (2) < right (2) is false, exit loop
Return: "bar2" ✓
Output: [null, null, "bar", "bar", null, "bar2", "bar2"] ✓
Another Example: get("love", 15) after set("love", "high", 10) and set("love", "low", 20)
Step 1: set("love", "high", 10)
cache["love"] = [(10, "high")]
Step 2: set("love", "low", 20)
cache["love"] = [(10, "high"), (20, "low")]
Step 3: get("love", 15)
values = [(10, "high"), (20, "low")]
left = 0, right = 2
Iteration 1:
mid = 0 + (2 - 0) / 2 = 1
values[1].first = 20 <= 15 ✗
right = mid = 1
Search range: [0, 1]
Iteration 2:
mid = 0 + (1 - 0) / 2 = 0
values[0].first = 10 <= 15 ✓
rtn = "high"
left = 0 + 1 = 1
Search range: [1, 1]
Loop condition: left (1) < right (1) is false, exit loop
Return: "high" ✓
Verification:
- Timestamp 10 <= 15 ✓
- Timestamp 20 > 15 ✗
- Largest valid timestamp is 10 with value “high” ✓
Output: "high" ✓
Complexity Analysis
- Time Complexity:
set: O(1) amortized - appending to vectorget: O(log n) - binary search, where n is the number of values for that key
- Space Complexity: O(n) - storing all key-value pairs with timestamps
Key Insights
- Strictly Increasing Timestamps: The guarantee that timestamps are strictly increasing means we don’t need to sort - values are automatically in sorted order
- Binary Search Pattern: Finding the largest timestamp <= target is a variant of binary search
- Rightmost Valid Element: We need the rightmost position where
timestamp <= target_timestamp - STL Alternatives:
lower_bound: Finds first position wheretimestamp >= target, then check previous elementupper_bound: Finds first position wheretimestamp > target, previous element is always the answerupper_boundis slightly simpler as it doesn’t require checking for exact match
Related Problems
- 34. Find First and Last Position of Element in Sorted Array - Binary search with lower/upper bounds
- 35. Search Insert Position - Lower bound binary search
- 146. LRU Cache - Another design problem with time-based operations
- 729. My Calendar I - Interval-based design problem