LC 1249: Minimum Remove to Make Valid Parentheses
LC 1249: Minimum Remove to Make Valid Parentheses
Difficulty: Medium
Category: String, Stack
Companies: Amazon, Facebook, Microsoft, Google
Problem Statement
Given a string s of '(', ')' and lowercase English characters.
Your task is to remove the minimum number of parentheses ( '(' or ')', in any positions ) so that the resulting parentheses string is valid and return any valid string.
Formally, a parentheses string is valid if and only if:
- It is the empty string, contains only lowercase characters, or
- It can be written as
AB(Aconcatenated withB), whereAandBare valid strings, or - It can be written as
(A), whereAis a valid string.
Examples
Example 1:
Input: s = "lee(t(c)o)de)"
Output: "lee(t(c)o)de"
Explanation: "lee(t(co)de)" , "lee(t(c)ode)" would also be accepted.
Example 2:
Input: s = "a)b(c)d"
Output: "ab(c)d"
Example 3:
Input: s = "))(("
Output: ""
Explanation: An empty string is also valid.
Constraints
1 <= s.length <= 10^5s[i]is either'(',')', or lowercase English letter.
Solution Approaches
Approach 1: Stack-Based Validation (Recommended)
Key Insight: Use a stack to track unmatched parentheses and remove them from the string.
Algorithm:
- Use stack to track indices of unmatched parentheses
- For each character, push
'('indices and pop for matching')' - Remove all indices remaining in stack (unmatched parentheses)
- Return the modified string
Time Complexity: O(n)
Space Complexity: O(n)
class Solution {
public:
string minRemoveToMakeValid(string s) {
stack<int> stk;
for(int idx = 0; idx < (int)s.size(); idx++) {
if(s[idx] == '(') stk.push(idx);
if(s[idx] == ')') {
if(!stk.empty() && s[stk.top()] == '(') {
stk.pop();
} else {
stk.push(idx);
}
}
}
string rtn = s;
while(!stk.empty()) {
rtn.erase(stk.top(), 1);
stk.pop();
}
return rtn;
}
};
Approach 2: Two-Pass String Building
Algorithm:
- First pass: Remove unmatched
')'by tracking balance - Second pass: Remove unmatched
'('by tracking balance in reverse - Build result string
Time Complexity: O(n)
Space Complexity: O(n)
class Solution {
public:
string minRemoveToMakeValid(string s) {
// First pass: remove unmatched ')'
string result = "";
int balance = 0;
for(char c : s) {
if(c == '(') {
balance++;
result += c;
} else if(c == ')') {
if(balance > 0) {
balance--;
result += c;
}
// Skip unmatched ')'
} else {
result += c;
}
}
// Second pass: remove unmatched '('
string final_result = "";
balance = 0;
for(int i = result.length() - 1; i >= 0; i--) {
char c = result[i];
if(c == ')') {
balance++;
final_result = c + final_result;
} else if(c == '(') {
if(balance > 0) {
balance--;
final_result = c + final_result;
}
// Skip unmatched '('
} else {
final_result = c + final_result;
}
}
return final_result;
}
};
Approach 3: Set-Based Tracking
Algorithm:
- Use two passes to identify invalid parentheses
- Use a set to track indices to remove
- Build result string excluding tracked indices
Time Complexity: O(n)
Space Complexity: O(n)
class Solution {
public:
string minRemoveToMakeValid(string s) {
unordered_set<int> to_remove;
stack<int> stk;
// Find unmatched parentheses
for(int i = 0; i < s.length(); i++) {
if(s[i] == '(') {
stk.push(i);
} else if(s[i] == ')') {
if(stk.empty()) {
to_remove.insert(i);
} else {
stk.pop();
}
}
}
// Add remaining unmatched '(' to removal set
while(!stk.empty()) {
to_remove.insert(stk.top());
stk.pop();
}
// Build result string
string result = "";
for(int i = 0; i < s.length(); i++) {
if(to_remove.find(i) == to_remove.end()) {
result += s[i];
}
}
return result;
}
};
Algorithm Analysis
Approach Comparison
| Approach | Time | Space | Pros | Cons |
|---|---|---|---|---|
| Stack-Based | O(n) | O(n) | Simple, intuitive | String erasure overhead |
| Two-Pass | O(n) | O(n) | No string modification | More complex logic |
| Set-Based | O(n) | O(n) | Clear separation of concerns | Extra space for set |
Key Insights
- Stack Validation: Use stack to track parentheses matching
- Index Tracking: Store indices instead of characters for removal
- Two-Pass Strategy: Handle unmatched parentheses in both directions
- Minimal Removal: Remove only the minimum required parentheses
Implementation Details
Stack-Based Approach
// Track indices of unmatched parentheses
if(s[idx] == '(') stk.push(idx);
if(s[idx] == ')') {
if(!stk.empty() && s[stk.top()] == '(') {
stk.pop(); // Match found
} else {
stk.push(idx); // Unmatched ')'
}
}
String Modification
// Remove unmatched parentheses from string
string rtn = s;
while(!stk.empty()) {
rtn.erase(stk.top(), 1);
stk.pop();
}
Edge Cases
- Empty String:
""→"" - No Parentheses:
"abc"→"abc" - All Unmatched:
"))(("→"" - Nested Valid:
"(a(b)c)"→"(a(b)c)" - Mixed Characters:
"a)b(c)d"→"ab(c)d"
Follow-up Questions
- What if you needed to return all possible valid strings?
- How would you handle multiple types of brackets?
- What if you needed to minimize the number of removals?
- How would you optimize for very large strings?
Related Problems
Optimization Techniques
- Stack Index Tracking: Store indices instead of characters
- Single Pass: Use stack to identify all unmatched parentheses
- String Building: Avoid multiple string modifications
- Memory Efficiency: Use minimal extra space
Code Quality Notes
- Readability: Stack approach is most intuitive
- Performance: All approaches have O(n) time complexity
- Space Efficiency: O(n) space for stack/set storage
- Robustness: Handles all edge cases correctly
This problem demonstrates the power of stack-based validation for parentheses matching and shows how to efficiently remove invalid characters while preserving valid structure.