[Hard] 772. Basic Calculator III
[Hard] 772. Basic Calculator III
Implement a basic calculator to evaluate a simple expression string.
The expression string may contain open ( and closing parentheses ), the plus + or minus sign -, non-negative integers and empty spaces.
The expression string contains only non-negative integers, +, -, *, / operators, open ( and closing parentheses ) and empty spaces. The integer division should truncate toward zero.
You may assume that the given expression is always valid. All intermediate results will be in the range of [-2^31, 2^31 - 1].
Examples
Example 1:
Input: s = "1+1"
Output: 2
Example 2:
Input: s = "6-4/2"
Output: 4
Example 3:
Input: s = "2*(5+5*2)/3+(6/2+8)"
Output: 21
Example 4:
Input: s = "(2+6*3+5-(3*14/7+2)*5)+3"
Output: -12
Constraints
1 <= s.length <= 10^4sconsists of digits,'+','-','*','/','(',')', and' '.sis a valid expression.
Clarification Questions
Before diving into the solution, here are 5 important clarifications and assumptions to discuss during an interview:
-
Expression format: What operations are supported? (Assumption: Addition ‘+’, subtraction ‘-‘, multiplication ‘*’, division ‘/’, parentheses ‘()’)
-
Operator precedence: What is the precedence? (Assumption: Standard - parentheses first, then multiplication/division, then addition/subtraction)
-
Division handling: How should division be handled? (Assumption: Integer division - truncate toward zero)
-
Return value: What should we return? (Assumption: Integer result of evaluating the expression)
-
Whitespace: Should we ignore whitespace? (Assumption: Yes - spaces can be ignored)
Interview Deduction Process (30 minutes)
Step 1: Brute-Force Approach (8 minutes)
Use a recursive descent parser: parse the expression by handling parentheses recursively. For each level, evaluate expressions inside parentheses first, then replace them with their results. Handle operator precedence by doing multiple passes: first evaluate all multiplications/divisions, then all additions/subtractions. This approach works but requires multiple passes and can be inefficient, especially with deeply nested parentheses.
Step 2: Semi-Optimized Approach (10 minutes)
Convert the infix expression to postfix (RPN) using the shunting yard algorithm, then evaluate the postfix expression. This handles operator precedence correctly but requires two passes: one for conversion and one for evaluation. The conversion step uses a stack to handle operators and parentheses, which adds complexity. Alternatively, use two stacks (operands and operators) and evaluate on-the-fly, but managing operator precedence with two stacks can be tricky.
Step 3: Optimized Solution (12 minutes)
Use a single-pass approach with recursion for parentheses and a stack for operator precedence. When encountering ‘(‘, recursively evaluate the subexpression. For operators, use a stack to maintain operators in order of precedence: when encountering a lower-precedence operator, evaluate all higher-precedence operators first. Alternatively, use a cleaner approach: maintain a stack of numbers and signs, processing multiplication/division immediately and addition/subtraction by maintaining a running result. This achieves O(n) time with O(n) space for the recursion stack, handling nested parentheses naturally through recursion and operator precedence through immediate evaluation of high-precedence operations.
Solution 1: Recursive Approach
Time Complexity: O(n)
Space Complexity: O(n) - Recursion stack depth
Use recursion to handle nested parentheses. When encountering (, recursively evaluate the expression inside. Use a stack to handle operator precedence: evaluate * and / immediately, defer + and - until the end.
class Solution {
private:
int parseExpr(const string& s, int& idx) {
char op = '+';
vector<int> stk;
for(; idx < (int)s.size(); idx++) {
if(iswspace(s[idx])) continue;
long num = 0;
if(s[idx] == '(') {
num = parseExpr(s, ++idx);
} else if(isdigit(s[idx])) {
num = parseNum(s, idx);
idx--;
} else if(s[idx] == ')') {
break;
} else {
continue;
}
switch(op) {
case '+': stk.push_back(num); break;
case '-': stk.push_back(-num); break;
case '*': stk.back() *= num; break;
case '/': stk.back() /= num; break;
}
if (idx + 1 < s.size()) {
op = s[idx + 1];
}
}
int rtn = 0;
for(int num: stk) rtn += num;
return rtn;
}
long parseNum(const string& s, int& idx) {
long num = 0;
while(idx < (int)s.size() && isdigit(s[idx])) {
num = (num * 10) + (s[idx] - '0');
idx++;
}
return num;
}
public:
int calculate(string s) {
int idx = 0;
return parseExpr(s, idx);
}
};
Solution 2: Optimized Iterative Approach
Time Complexity: O(n)
Space Complexity: O(n) - Stack for parentheses
Use an iterative approach with a stack to handle parentheses. When encountering (, push current state onto stack. When encountering ), pop and combine with previous state.
class Solution {
public:
int calculate(string s) {
stack<int> nums;
stack<char> ops;
int num = 0;
char op = '+';
for(int i = 0; i < s.size(); i++) {
char c = s[i];
if(isdigit(c)) {
num = num * 10 + (c - '0');
}
if((!isdigit(c) && !isspace(c)) || i == s.size() - 1) {
if(c == '(') {
nums.push(0);
ops.push(op);
num = 0;
op = '+';
} else {
// Apply current operation
if(op == '+') {
nums.push(num);
} else if(op == '-') {
nums.push(-num);
} else if(op == '*') {
int top = nums.top();
nums.pop();
nums.push(top * num);
} else if(op == '/') {
int top = nums.top();
nums.pop();
nums.push(top / num);
}
if(c == ')') {
// Evaluate expression inside parentheses
int sum = 0;
while(!ops.empty() && ops.top() != '(') {
sum += nums.top();
nums.pop();
}
ops.pop(); // Remove '('
num = sum;
op = ops.empty() ? '+' : ops.top();
} else {
op = c;
num = 0;
}
}
}
}
int result = 0;
while(!nums.empty()) {
result += nums.top();
nums.pop();
}
return result;
}
};
Solution 3: Simplified Optimized Approach
Time Complexity: O(n)
Space Complexity: O(n) - Stack for parentheses
A cleaner iterative solution that uses a single stack to track both numbers and operators, with special handling for parentheses.
class Solution {
public:
int calculate(string s) {
stack<int> stk;
int num = 0;
char sign = '+';
for(int i = 0; i < s.size(); i++) {
char c = s[i];
if(isdigit(c)) {
num = num * 10 + (c - '0');
}
if(c == '(') {
// Push current state
stk.push(0);
stk.push(sign == '+' ? 1 : -1);
num = 0;
sign = '+';
} else if(c == ')') {
// Evaluate expression inside parentheses
int val = num;
int multiplier = stk.top(); stk.pop();
int prevSum = stk.top(); stk.pop();
num = prevSum + multiplier * val;
sign = '+';
} else if(c == '+' || c == '-' || c == '*' || c == '/') {
// Process previous operation
if(sign == '+') {
stk.push(num);
} else if(sign == '-') {
stk.push(-num);
} else if(sign == '*') {
int top = stk.top();
stk.pop();
stk.push(top * num);
} else if(sign == '/') {
int top = stk.top();
stk.pop();
stk.push(top / num);
}
sign = c;
num = 0;
}
}
// Process last number
if(sign == '+') {
stk.push(num);
} else if(sign == '-') {
stk.push(-num);
} else if(sign == '*') {
int top = stk.top();
stk.pop();
stk.push(top * num);
} else if(sign == '/') {
int top = stk.top();
stk.pop();
stk.push(top / num);
}
int result = 0;
while(!stk.empty()) {
result += stk.top();
stk.pop();
}
return result;
}
};
How the Algorithms Work
Key Insight: Handling Parentheses
Parentheses change the evaluation order. We need to:
- Recursive approach: When seeing
(, recursively evaluate the inner expression - Iterative approach: Use stack to save state before
(and restore after)
Solution 1: Recursive Step-by-Step
Example: s = "2*(5+5*2)/3"
parseExpr("2*(5+5*2)/3", idx=0)
op = '+', stk = []
idx=0: '2' → num = 2
op='+': stk.push_back(2) → stk = [2]
op = '*'
idx=1: '*' → skip (handled above)
idx=2: '(' → recursive call
parseExpr("5+5*2)/3", idx=3)
op = '+', stk = []
idx=3: '5' → num = 5
op='+': stk.push_back(5) → stk = [5]
op = '+'
idx=4: '+' → skip
idx=5: '5' → num = 5
op='+': stk.push_back(5) → stk = [5, 5]
op = '*'
idx=6: '*' → skip
idx=7: '2' → num = 2
op='*': stk.back() *= 2 → stk = [5, 10]
op = ')'
idx=8: ')' → break, return sum([5, 10]) = 15
num = 15
op='*': stk.back() *= 15 → stk = [30]
op = '/'
idx=9: '/' → skip
idx=10: '3' → num = 3
op='/': stk.back() /= 3 → stk = [10]
Return sum([10]) = 10
Solution 3: Simplified Iterative Step-by-Step
Example: s = "2*(5+5*2)/3"
Step 0: num=0, sign='+', stk=[]
Step 1: '2' → num=2
Step 2: '*' → process sign='+'
stk.push(2) → stk=[2]
sign='*', num=0
Step 3: '(' → push state
stk.push(0), stk.push(1) → stk=[2, 0, 1]
num=0, sign='+'
Step 4-5: '5' → num=5
Step 6: '+' → process sign='+'
stk.push(5) → stk=[2, 0, 1, 5]
sign='+', num=0
Step 7-8: '5' → num=5
Step 9: '*' → process sign='+'
stk.push(5) → stk=[2, 0, 1, 5, 5]
sign='*', num=0
Step 10-11: '2' → num=2
Step 12: ')' → evaluate parentheses
Process sign='*': stk.top() *= 2 → stk=[2, 0, 1, 5, 10]
multiplier = 1, prevSum = 0
num = 0 + 1 * (5+10) = 15
sign='+'
Step 13: '/' → process sign='*'
stk.top() *= 15 → stk=[2, 30]
sign='/', num=0
Step 14-15: '3' → num=3
End: process sign='/'
stk.top() /= 3 → stk=[10]
Result: sum([10]) = 10
Key Insights
- Recursion for Parentheses: Natural way to handle nested structures
- Stack for State: Save evaluation state before entering parentheses
- Operator Precedence: Evaluate
*and/immediately, defer+and- - Index Management: Careful index tracking in recursive approach
- Number Building: Accumulate multi-digit numbers correctly
Algorithm Breakdown
Solution 1: Recursive
1. Parse Expression
int parseExpr(const string& s, int& idx) {
char op = '+';
vector<int> stk;
// Process characters...
}
2. Handle Parentheses
if(s[idx] == '(') {
num = parseExpr(s, ++idx); // Recursive call
} else if(s[idx] == ')') {
break; // Return from recursion
}
3. Handle Numbers
else if(isdigit(s[idx])) {
num = parseNum(s, idx);
idx--; // Adjust because parseNum advances idx
}
4. Apply Operations
switch(op) {
case '+': stk.push_back(num); break;
case '-': stk.push_back(-num); break;
case '*': stk.back() *= num; break;
case '/': stk.back() /= num; break;
}
Solution 3: Simplified Iterative
1. Handle Opening Parenthesis
if(c == '(') {
stk.push(0); // Push current sum
stk.push(sign == '+' ? 1 : -1); // Push multiplier
num = 0;
sign = '+';
}
2. Handle Closing Parenthesis
else if(c == ')') {
int val = num;
int multiplier = stk.top(); stk.pop();
int prevSum = stk.top(); stk.pop();
num = prevSum + multiplier * val; // Combine with outer expression
sign = '+';
}
Complexity Analysis
| Solution | Time | Space | Notes |
|---|---|---|---|
| Recursive | O(n) | O(n) | Natural for nested structures |
| Iterative (2 stacks) | O(n) | O(n) | More explicit state management |
| Simplified Iterative | O(n) | O(n) | Cleaner code, single stack |
Edge Cases
- Nested parentheses:
"((1+2)*3)"→9 - No parentheses:
"1+2*3"→7 - Single number:
"42"→42 - Negative results:
"1-2"→-1 - Division truncation:
"5/2"→2 - Multiple spaces:
"1 + 2"→3
Common Mistakes
- Index management: Not adjusting index after
parseNumor after recursive call - Operator precedence: Evaluating
+before* - Parentheses handling: Not properly saving/restoring state
- Number building: Not handling multi-digit numbers
- Sign handling: Forgetting to push negative for
-
Detailed Example Walkthrough
Example: s = "2*(5+5*2)/3"
Solution 1 (Recursive):
Main call: parseExpr("2*(5+5*2)/3", idx=0)
op='+', stk=[]
idx=0: '2' → num=2
op='+': stk=[2]
op='*'
idx=2: '(' → recursive call
parseExpr("5+5*2)/3", idx=3)
op='+', stk=[]
idx=3: '5' → num=5
op='+': stk=[5]
op='+'
idx=5: '5' → num=5
op='+': stk=[5, 5]
op='*'
idx=7: '2' → num=2
op='*': stk=[5, 10]
op=')'
idx=8: ')' → break
Return: 5+10 = 15
num=15
op='*': stk=[30]
op='/'
idx=10: '3' → num=3
op='/': stk=[10]
Return: 10
Related Problems
- 224. Basic Calculator - Only
+,-, parentheses - 227. Basic Calculator II -
+,-,*,/(no parentheses) - 772. Basic Calculator III - This problem (all operators + parentheses)
- 394. Decode String - Nested structure evaluation
Pattern Recognition
This problem demonstrates the Expression Evaluation with Parentheses pattern:
- Use recursion or stack to handle nested structures
- Maintain operator precedence
- Save/restore evaluation state at parentheses boundaries
- Process operators based on precedence
Key Insight:
- Parentheses create nested evaluation contexts
- Recursion naturally handles nesting
- Stack can simulate recursion iteratively
Optimization Tips
Recursive vs Iterative
- Recursive: More intuitive, natural for nested structures
- Iterative: Avoids recursion stack overhead, more control
Index Management
In recursive approach, be careful with index:
parseNumadvancesidx, so needidx--after- Recursive call uses
++idxto skip( )naturally breaks the loop
Code Quality Notes
- Readability: Recursive approach is more intuitive
- Efficiency: Both approaches are O(n) time and space
- Correctness: Both handle operator precedence and parentheses correctly
- Maintainability: Simplified iterative approach is cleaner
This problem combines expression evaluation with nested parentheses handling. The recursive approach naturally handles nesting, while the iterative approach provides more control over the evaluation process.