[Medium] 131. Palindrome Partitioning
[Medium] 131. Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s.
Examples
Example 1:
Input: s = "aab"
Output: [["a","a","b"],["aa","b"]]
Example 2:
Input: s = "a"
Output: [["a"]]
Constraints
- 1 <= s.length <= 16
- s contains only lowercase English letters
Approach
The solution uses backtracking (DFS) with the following strategy:
- Base Case: When we’ve processed the entire string, add the current partition to results
- Recursive Case: For each possible end position, check if substring is palindrome
- Backtrack: If palindrome, add to current partition and recurse, then remove
- Palindrome Check: Verify if substring from start to end is a palindrome
Solution in Python
Time Complexity: O(2^n × n) - Exponential due to backtracking, n for palindrome check
Space Complexity: O(n) - For recursion stack and current partition
class Solution:
def partition(self, s: str) -> list[list[str]]:
cur = []
result = []
self.dfs(s, 0, cur, result)
return result
def dfs(self, s: str, start: int, cur: list[str], result: list[list[str]]) -> None:
if start >= len(s):
result.append(cur[:])
return
for end in range(start, len(s)):
if self.isPalindrome(s, start, end):
cur.append(s[start:end + 1])
self.dfs(s, end + 1, cur, result)
cur.pop()
def isPalindrome(self, s: str, start: int, end: int) -> bool:
substring = s[start:end + 1]
return substring == substring[::-1]
Step-by-Step Example
For s = "aab":
- Start at index 0:
- Check “a” (0,0): is palindrome → add to path:
["a"] - Recurse with start=1
- Check “a” (0,0): is palindrome → add to path:
- Start at index 1:
- Check “a” (1,1): is palindrome → add to path:
["a","a"] - Recurse with start=2
- Check “a” (1,1): is palindrome → add to path:
- Start at index 2:
- Check “b” (2,2): is palindrome → add to path:
["a","a","b"] - Recurse with start=3 → base case → add
["a","a","b"]to result
- Check “b” (2,2): is palindrome → add to path:
- Backtrack to index 1:
- Remove “a” from path:
["a"] - Check “ab” (1,2): not palindrome → skip
- Remove “a” from path:
- Backtrack to index 0:
- Remove “a” from path:
[] - Check “aa” (0,1): is palindrome → add to path:
["aa"] - Recurse with start=2
- Remove “a” from path:
- Start at index 2:
- Check “b” (2,2): is palindrome → add to path:
["aa","b"] - Recurse with start=3 → base case → add
["aa","b"]to result
- Check “b” (2,2): is palindrome → add to path:
Result: [["a","a","b"],["aa","b"]]
Key Insights
- Backtracking Pattern: Add → Recurse → Remove
- Palindrome Check: Verify each substring before adding to partition
- Index Management: Use start and end indices to define substrings
- Base Case: When start >= string length, we have a complete partition
- Pruning: Only recurse if current substring is a palindrome
Alternative Approaches
1. Optimized Palindrome Check
def isPalindrome(self, s: str, start: int, end: int) -> bool:
while start < end:
if s[start] != s[end]:
return False
start += 1
end -= 1
return True
2. Precompute Palindrome Table
isPal = [[False] * n for _ in range(n)]
# Precompute all palindrome substrings
# Time: O(n²), Space: O(n²)
Common Mistakes
- Forgetting to backtrack: Not removing elements after recursion
- Index errors: Off-by-one errors in substring extraction
- Inefficient palindrome check: Creating unnecessary string copies
- Missing base case: Not handling empty string or single character
- Duplicate results: Not properly managing the current partition
Related Problems
- 132. Palindrome Partitioning II - Minimum cuts
- 5. Longest Palindromic Substring
- 647. Palindromic Substrings
- 93. Restore IP Addresses - Similar partitioning pattern
Visual Representation
Input: "aab"
Backtracking Tree:
""
/ \
"a" "aa"
/ \
"a" "b"
/
"b"
/
[complete]
Results: ["a","a","b"] and ["aa","b"]
This problem demonstrates the classic backtracking pattern for generating all possible partitions with a constraint (palindrome check).